Tuesday, April 2, 2019
Spacetime Structure Implications from Quantum Mechanics
Space clock rhythm complex body break apart Implications from Quantum MechanicsSpace clip Structure Implications from Quantum Mechanics and theory of relativityAbstractSome motif proposed in the recent Penroses Conformal Cyclic Cosmology ( three hundred) is discussed in this paper. In CCC it is argued that the plan of term looses its supposeing in a instauration alter solely with zippo respite-mass members (i.e. photons and gravitons). This picky idea is discussed, because at least conceptu ally it shadower have s illumely deduction on our sagaciousness of space date and a role of rest-mass. Relativity was a great revolution in our apprehensiveness of space and m, sometimes breathing to paradoxes. Quantum Mechanics introduced quanta of vigour. It occurs that the existence of the minimum quanta of energy cigaret has a strong implication on the spacetime mental synthesis. slip should embarrass at the max. 250 words. The abstract should give readers concise an d correct information nearly the material of the article. It indicates what methodology you have employ for your results and how you are concluding these results. The abstract should be restricted into a single split with Times unused Roman with Font Size 10, with proper justification.Keywords quantum mechanics general relativity theory conformal cyclic cosmologyIntroductionEinsteins Relativity theory has been experimentally sustain actually thoroughly and besides Quantum Mechanics predictions are experimentally very well checked. The philosophical or corporal meter reading of mathematical equations of Relativity is comm still accepted. up to now Quantum Mechanics is a very good workings operating tool, whereas the interpretation differs widely amongst physicist and philosophers (outlook of various interpretations can be prove e.g. in 2). Basing on the recent Penroses cosmological proposal 9 it seems that some implications to our understanding of spacetime can be deriv ed from principles and as consequences of Relativity and Plancks law. It can also go forth to a specific interpretation of a swan usage in Quantum Physics. The Penroses selected idea pull up s bear offs be presented at first. Then some cerebrateations influenced by this idea impart be discussed.Problems with time measurementIn 9 Penrose states that in a spacetime change solely by photons and gravitons no clock can be built (Only the fact that rest-mass is zero is important. Therefore in the rest of this paper only photons will be discussed. Anywhere in the textbook when a photon is discussed it is important that it is a particle with zero rest-mass.). In enact to have both clock a wide particle is needed. A stable immense particle ticks with the specific frequency (It can be derived by combining Plancks formula and Einsteins formula . Detailed discussion is in 9.).(1) .So when thither is no massive particles a spacetime looses its metric structure and only the conformal structure remains.On the other hand the black quite a little evaporation process ( cognise as Hawking radiation) 5 may lead the cosmea to much(prenominal) a state in a very unyielding time. Simply speaking if the humans will be expanding (and in that respectfrom cooling) wherefore afterwards some time the background will be caller than all black messinesss. Of course the infinite expansion is assumed.There are however some objections, because there may be some subject area left, non collapsed to black holes. E.g. some l ily massive particles can resist. Penrose discuses twain possibilities some highly hypothetical process of loosing mass in a very long period and implications of an outcome horizon. It is non a kitchen range of this paper to discus it to a greater extent thoroughly. Only to state that a spacetime fill only with zero restmass particles is physically interesting, reasonable and practicable. Penrose financial statement that in such a spacetime no time measurement can be by and through with(p) (and only conformal structure remains) seems true 3, 11. Briefly genius can get by with the geodesics neither of test particles nor of light rays in measurement process 6. more discussion on this topic can be found e.g. in 10. In this paper it is assumed that Penroses proposal is true and if spacetime is alter with zero rest-mass particles or massive particles which cannot influence for each atomic number 53ness other due to example horizon because time cannot be measured in such a spacetime. Possible consequences of this statement will be discussed.Proper time of a photon, the Observability belief and tiling a spacetimeLet us consider a spacetime change only with zero rest-mass particles. From Special Relativity it is known that any of such a particle feels no proper time. For typeface no time passes for a photon amidst its emission from the Sun and its gripping on the Earth. Time passes e.g. for pack on the Earth, h ardly no time passes for a photon. Sticking to the Observability Principle, which means that anything which cannot be observed does also not exist 7, 8, one can say that for a photon both events tell apart place at the alike time (Because time difference amid leaving the Sun and coming on the Earth, such as for the people on the Earth, does not exist for a photon and is not observed by a photon.). It means that no time passes in the domain filled only by zero rest-mass particles just as Penrose concluded in 9. For the sake of clarity such a Universe will be called a Penroses Universe further in this paper.Fig. 1 To distinguish amid different configurations time is needed. In case of no time (inability to measure time) one can say that all potential configurations happen at the same time. Or simply each particle is at the same time in all possible places.It seems important to present some consideration here (which was not stated by Penrose). From the above paragraph it can be co ncluded that different configurations can be established in the same time. Here a time is unsounded as an internal property of a Penroses Universe. The meaning of adjective internal will be clarified throughout the rest of this paper. Of course we are used to measure time for example by comparing configurations of objects (e.g. space proportions between separate of them, etc.). When we see an egg on a table and succeeding(a) we see smashed egg on the same table we system that a time has passed. In sake of clarity in a Universe filled with photons solely we should distinct between configurations (able to happen at the same internal time) and events (which happen one after another due to the order of the arrow of time). In a Penroses Universe configurations are possible, but events are excluded by the definitions.So in a Penroses Universe each possible configuration memorizes place in the same (internal) time. Equivalently they just take place simultaneously. (If there is no time it can be verbalise that everything happens at the same time.) If one considers all possible configurations in a Penroses Universe, one can equivalently say that each zero restmass particle is all over at the same (internal) time (Let us notice that we may fail internal because if it is assumed that nothing exists except a limited Penroses Universe then any other reference for some other time cannot exist.).Of course the fact that a photon feels no time when passing from A to B i.e. that it has zero proper time does not imply that it is therefore everywhere in spacetime and, in particular, it does not mean that it is simultaneously on all possible trends between A and B. Indeed, in relativity theory, light moves on well-defined null geodesics. What I am trying to emhasise is that without massive particles it is impossible to discriminate these geodesics 3 and therefore (actually this is the crucial step) following the Observability Principle we pick out all situations that are undistinguishable. It may be concluded that this is somehow uniform to rather commonly agreed thought that the reality emerges only in relation to the results of measurements.Fig. 2 In A there is no massive particle. In B there are some. Time exists internally in B. A is a tiny Penroses Universe without time (as far as no interaction with B happens). A (global) time for which we can regale A as Penroses Universe is measured in B, because in A no time exists. It means that on A+B there is a time.Such a picture is not valid in our Universe because efficient clocks exist in it. The apparent contradiction occurs only because we imagine a Penroses Universe from the external bakshis of absorb (experiencing the flow of the time). If we imagine that nothing exists except a Penroses Universe we would not have to use internal to describe time. Simply no thingummy to measure time flow would exist.Now let us calculate about a spacetime as a confused (as in familiar Relativity). On e living in the spacetime approximates the global structure of the whole mixed by observing his neighbourhood. However locally there is no positive time as Relativity states. Consider now a tiny tiny part of the Universe (an open subset in the manifold). The Universe is filled by both zero and non zero rest-mass particles (as our Universe we live in). still locally we can celebrate small parts of it which are filled solely by photons. We can treat each such a part as a Penroses Universe as far as no interaction with any massive particle takes place. It is due to precedent considerations. We can say that no time passes inside such a part as far as no event takes place. It is understood that events take place in the global Universe. And by the event we mean here some act of interaction between a part being a Penroses Universe and a part of the global Universe possessing at least one non zero rest-mass particle. Then these two parts can be toughened as one part (being then not a Penroses Universe). In other words let us find in our Universe as much as possible very small Penroses photon filled local Universes. These small Universes differ from Penroses one big Universe by the fact that they can be set as such only as far as they do not interact with some massive part. The idea of tiling the spacetime manifold is sketched on pictures.Fig. 3 An interaction happened from part B to part A. A is no longer a Penroses Universe.Fig. 4 Such a unfailing Universe cannot be divided into a massive parts and Penroses Universe parts. No matter how we would tile this Universe each component has no time.In a Penroses Universe it is unclear how the different configurations (spacetime paths) are to be defined. Indeed, just as there is no time measure, so there is no spatial measure (with which one can distinguish, for instance the distance between points on two different paths). Therefore due to the Observability Principle particles in such a universe are as if they were e verywhere at the same time. What is needed to talk about any time order is an interaction with some massive particles. Only then e.g. in the beginning and after are sensible notions.Discussion on the Double motherfucker ExperimentIn the famous doubleslit experiment a photon seems to pass through both slits at the same time. Therefore a expand function has been introduced, because a particle behave as if it were a wave. However if one tries to localise through which slit a particle actually passes, noise image is erased and a particle behaves as a corpuscle. Therefore one says about corpuscular-wave dualism. But due to considerations in previous paragraph one should also be able to say that a photon rightfully passes through both slits (because no time passes for a photon, so two event take place for a photon at the same time). And what is called a collapse of a wave function is just a choosing of a particular path out of all possible. Such a measurement is however possible only if non zero rest-mass is involved. It is known that as a particle becomes more massive quantum properties are less clear and lighter particles behaves more like a waves (photons, electrons). The ability to measure time interval can also be seen from Eq. (1). In such an interpretation a wave function is not an abstract existence in observer mind. It is a physical being. But as such should somehow depend not only on a particle but also on a spacetime in which is considered.Summarising Relativity Einstein once strongly criticised any physical concept which is independent in its physical properties, having a physical effect, but not itself influenced by physical conditions 4. Just a proposed interpretation of a wave function should therefore be justified if this wave function interacts with spacetime.Basing on General Relativity we know that the spacetime is influenced by gravitational force. So the first simple test for the new interpretation is to check whether gravitation changes a wave function. Fortunately such an experiment was done. Firstly neutron shaft of light was scattered into two transmits each influenced by the same gravitational field. second the whole apparatus was placed in a way that after scattering the gravitational fields for the first beam and for the second beam were different. By examining the interference pattern it was observed that the quantum-mechanical phase shift of neutrons is caused by their interaction with Earths gravitational field 1. One can then also speculate that the gravitational field influences a wave function.It can be objected that the proposed explanation of quantum mechanics is contradicted by the conservation of the energy. A particle really going thorough all possible paths would do infinite work. It is not true in the proposed scheme. No procedure could measure such an energy, because those trips take places in a part of a spacetime where no useful time concept exists. If time is immeasurable then the particle ca n do the work needed to go through all possible paths. However immediately when a working clock is used, a particular path is localised an the energy conservation is saved. It can also be seen from this argument that the Feynmans style Integral approach is the most natural formulation of Quantum Mechanics.ConclusionsThe presented arguments lead to the specific interpretation of quantum mechanics. Conceptually the presented considerations show that one can find some guide towards Quantum Physics starting from Relativity and Plancks law. Especially Feynmans Path Integral Formulation emerges in nice way.Some further implication to Cosmology occurs. The Universe filled solely with zero rest-mass particles should be treated as in a superposition state of all possible states. Occurrence of strictly positive masses not separated by event horizon would give the origin to time and states being in a superposition can be reduced to a particular state. It advocates the concept of the Universe wave function.In a black hole singularity time stops and mass density is infinite as is known from Relativity. If one would look at a singularity from the presented point of view one could say that mass density is infinite only for external observer. Because only such an observer has a meaningful concept of time. Infinite density occurs as a consequence of localising all in-falling particles in a point. However as it was explained in the paper if time stops, all particles can occupy the same point in the same time (which exists only for external observer). A possibility of application of the presented scheme will be explored in the future research.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment